Let (an) be a sequence of real numbers. ∞∑n=0an be a series. Let sn=n∑k=0ak
Then the sequence (an) is Cesaro Summable with Cesaro Sum s∈R if limn→∞σnn+1=limn→∞1n+1n∑k=0sn=s
Let f(x)=∞∑k=0anxn
be power series. Then the sequence is Abel Summable if the power series f(x) converges with a radius of convergence |x|<1.
You can see that if sn→L as n→∞ then σn→s as n→∞ i.e. convergence of the series implies Cesaro Summability
We will prove Abel Summability is much stronger than Cesaro summability i.e. if a series is Cesaro Summable then it is Abel Summable.
So assume an is Cesaro summable. Hence limn→∞σnn+1=limn→∞1n+1n∑k=0sn=L
Hence the sequence (σnn+1) is Abel summable. Therefore f(x)=∞∑n=0σnn+1xn
converges. Now see ∞∑n=0σnxn=∞∑n=0xnn∑k=0sk=∞∑k=0sk∞∑n=kxn=∞∑k=0skxk1−x=11−x∞∑n=0snxn
Doing the same process again we get ∞∑n=0snxn=11−x∞∑n=0anxn
Hence ∞∑n=0σnxn=1(1−x)2∞∑n=0anxn
Another identity we need is ∞∑n=0(n+1)xn=1(1−x)2
In order to show this let f(x)=∞∑n=0xn=11−x. Then 1(1−x)2=f′(x)=∞∑n=1nxn−1=∞∑n=0(n+1)xn
Now f(x)=∞∑n=0σnn+1xn⟺xf(x)=∞∑n=1σn−1nxn
Since f(x) converges, xf(x) converges and therefore f(x)+xf′(x) converges. f(x)+xf′(x)=∞∑n=1σn−1nnxn−1=∞∑n=1σn−1nxn−1=∞∑n=0σnxn=1(1−x)2∞∑n=0anxn
Therefore ∞∑n=0anxn=f(x)+xf′(x)(1−x)2
Since |x|<1 the function f(x)+xf′(x)(1−x)2 also converges. Hence ∞∑n=0anxn converges. Therefore Cesaro summability implies Abel summability.
Since σn+1 converges to s. For ϵ>0 ∃ k∈N such that |σnn+1−s|<ϵ
Now (1−x)2∞∑n=0σnxn=(1−x)2∞∑n=0(n+1)σnn+1xn
|(1−x)2∞∑n=0(n+1)σnn+1xn−L|≤(1−x)2∞∑n=0(n+1)|σnn+1xn−L|
Now breaking the sum up at k we get (1−x)2k∑n=0(n)|σnn+1xn−L|+(1−x)2∞∑n=k+1(n+1)|σnn+1xn−L|
As x→1− the first part goes to 0 and the second part of the sum becomes (1−x)2∞∑n=k+1(n+1)|σnn+1xn−L|<(1−x)2∞∑n=k+1(n+1)ϵk=ϵk1−ϵ
which also goes to 0. Hence limx→1−(1−x)2∞∑n=0σnxn=limx→1−∞∑n=0anxn=L
◼
Comments
Post a Comment